Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JCO Precis Oncol ; 7: e2200317, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099733

RESUMO

PURPOSE: In the two-cohort phase II KEYNOTE-086 study (ClinicalTrials.gov identifier: NCT02447003), first-line and second-line or later pembrolizumab monotherapy demonstrated antitumor activity in metastatic triple-negative breast cancer (mTNBC; N = 254). This exploratory analysis evaluates the association between prespecified molecular biomarkers and clinical outcomes. METHODS: Cohort A enrolled patients with disease progression after one or more systemic therapies for metastatic disease irrespective of PD-L1 status; Cohort B enrolled patients with previously untreated PD-L1-positive (combined positive score [CPS] ≥ 1) metastatic disease. The association between the following biomarkers as continuous variables and clinical outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) was evaluated: PD-L1 CPS (immunohistochemistry), cluster of differentiation 8 (CD8; immunohistochemistry), stromal tumor-infiltrating lymphocyte (sTIL; hematoxylin and eosin staining), tumor mutational burden (TMB; whole-exome sequencing [WES]), homologous recombination deficiency-loss of heterozygosity, mutational signature 3 (WES), mutational signature 2 (apolipoprotein B mRNA editing catalytic polypeptide-like; WES), T-cell-inflamed gene expression profile (TcellinfGEP; RNA sequencing), and 10 non-TcellinfGEP signatures (RNA sequencing); Wald test P values were calculated, and significance was prespecified at α = 0.05. RESULTS: In the combined cohorts (A and B), PD-L1 (P = .040), CD8 (P < .001), sTILs (P = .012), TMB (P = .007), and TcellinfGEP (P = .011) were significantly associated with ORR; CD8 (P < .001), TMB (P = .034), Signature 3 (P = .009), and TcellinfGEP (P = .002) with PFS; and CD8 (P < .001), sTILs (P = .004), TMB (P = .025), and TcellinfGEP (P = .001) with OS. None of the non-TcellinfGEP signatures were associated with outcomes of pembrolizumab after adjusting for the TcellinfGEP. CONCLUSION: In this exploratory biomarker analysis from KEYNOTE-086, baseline tumor PD-L1, CD8, sTILs, TMB, and TcellinfGEP were associated with improved clinical outcomes of pembrolizumab and may help identify patients with mTNBC who are most likely to respond to pembrolizumab monotherapy.


Assuntos
Antineoplásicos Imunológicos , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética
2.
Clin Cancer Res ; 28(10): 2050-2060, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247908

RESUMO

PURPOSE: In an exploratory analysis, we investigated the association between programmed death ligand 1 (PD-L1), tumor mutational burden (TMB), T-cell-inflamed gene expression profile (TcellinfGEP), and stromal signature with outcomes of pembrolizumab in urothelial carcinoma (UC). PATIENTS AND METHODS: Patients with advanced UC received first-line pembrolizumab 200 mg every 3 weeks in the single-arm phase II KEYNOTE-052 trial (NCT02335424) and salvage pembrolizumab 200 mg every 3 weeks or chemotherapy (paclitaxel/docetaxel/vinflunine) in the randomized phase III KEYNOTE-045 trial (NCT02256436). The association of each biomarker (continuous variable) with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) was evaluated using logistic regression (ORR) and Cox PH (PFS, OS), adjusted for ECOG PS; nominal P values were calculated without multiplicity adjustment (one-sided, pembrolizumab; two-sided, chemotherapy). Significance was prespecified at α = 0.05. RESULTS: In KEYNOTE-052, PD-L1, TMB, and TcellinfGEP were significantly associated with improved outcomes; stromal signature was significantly associated with worse outcomes. In KEYNOTE-045, although findings for TMB and TcellinfGEP with pembrolizumab were consistent with those of KEYNOTE-052, PD-L1 was not significantly associated with improved outcomes, nor was stromal signature associated with worse outcomes with pembrolizumab; chemotherapy was not associated with outcomes in a consistent manner for any of the biomarkers. Hazard ratio (HR) estimates at prespecified cutoffs showed an advantage for pembrolizumab versus chemotherapy regardless of PD-L1 or TMB, with a trend toward lower HRs in the combined positive score ≥10 and the TMB ≥175 mutation/exome subgroup. For TcellinfGEP, PFS and OS HRs were lower in the TcellinfGEP-nonlow subgroup regardless of treatment. CONCLUSIONS: Multiple biomarkers characterizing the tumor microenvironment may help predict response to pembrolizumab monotherapy in UC, and potential clinical utility of these biomarkers may be context-dependent.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Feminino , Humanos , Masculino , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
3.
Cancer Immunol Res ; 9(4): 470-485, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33514509

RESUMO

Tumor-infiltrating myeloid-derived suppressor cells (MDSC) are associated with poor survival outcomes in many human cancers. MDSCs inhibit T cell-mediated tumor immunity in part because they strongly inhibit T-cell function. However, whether MDSCs inhibit early or later steps of T-cell activation is not well established. Here we show that MDSCs inhibited proliferation and induced apoptosis of CD8+ T cells even in the presence of dendritic cells (DC) presenting a high-affinity cognate peptide. This inhibitory effect was also observed with delayed addition of MDSCs to cocultures, consistent with functional data showing that T cells expressed multiple early activation markers even in the presence of MDSCs. Single-cell RNA-sequencing analysis of CD8+ T cells demonstrated a p53 transcriptional signature in CD8+ T cells cocultured with MDSCs and DCs. Confocal microscopy showed induction of DNA damage and nuclear accumulation of activated p53 protein in a substantial fraction of these T cells. DNA damage in T cells was dependent on the iNOS enzyme and subsequent nitric oxide release by MDSCs. Small molecule-mediated inhibition of iNOS or inactivation of the Nos2 gene in MDSCs markedly diminished DNA damage in CD8+ T cells. DNA damage in CD8+ T cells was also observed in KPC pancreatic tumors but was reduced in tumors implanted into Nos2-deficient mice compared with wild-type mice. These data demonstrate that MDSCs do not block early steps of T-cell activation but rather induce DNA damage and p53 pathway activation in CD8+ T cells through an iNOS-dependent pathway.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Supressoras Mieloides/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Imunossupressores , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/imunologia
4.
Cell Stem Cell ; 26(3): 391-402.e5, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084389

RESUMO

Intestinal stem cells (ISCs) are confined to crypt bottoms and their progeny differentiate near crypt-villus junctions. Wnt and bone morphogenic protein (BMP) gradients drive this polarity, and colorectal cancer fundamentally reflects disruption of this homeostatic signaling. However, sub-epithelial sources of crucial agonists and antagonists that organize this BMP gradient remain obscure. Here, we couple whole-mount high-resolution microscopy with ensemble and single-cell RNA sequencing (RNA-seq) to identify three distinct PDGFRA+ mesenchymal cell types. PDGFRA(hi) telocytes are especially abundant at the villus base and provide a BMP reservoir, and we identified a CD81+ PDGFRA(lo) population present just below crypts that secretes the BMP antagonist Gremlin1. These cells, referred to as trophocytes, are sufficient to expand ISCs in vitro without additional trophic support and contribute to ISC maintenance in vivo. This study reveals intestinal mesenchymal structure at fine anatomic, molecular, and functional detail and the cellular basis for a signaling gradient necessary for tissue self-renewal.


Assuntos
Intestinos , Transdução de Sinais , Proliferação de Células , Mucosa Intestinal , Células-Tronco
5.
J Clin Invest ; 129(9): 3821-3826, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211692

RESUMO

Shwachman-Diamond Syndrome (SDS) is a rare and clinically-heterogeneous bone marrow (BM) failure syndrome caused by mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene. Although SDS was described over 50 years ago, the molecular pathogenesis is poorly understood due, in part, to the rarity and heterogeneity of the affected hematopoietic progenitors. To address this, we used single cell RNA sequencing to profile scant hematopoietic stem and progenitor cells from SDS patients. We generated a single cell map of early lineage commitment and found that SDS hematopoiesis was left-shifted with selective loss of granulocyte-monocyte progenitors. Transcriptional targets of transforming growth factor-beta (TGFß) were dysregulated in SDS hematopoietic stem cells and multipotent progenitors, but not in lineage-committed progenitors. TGFß inhibitors (AVID200 and SD208) increased hematopoietic colony formation of SDS patient BM. Finally, TGFß3 and other TGFß pathway members were elevated in SDS patient blood plasma. These data establish the TGFß pathway as a novel candidate biomarker and therapeutic target in SDS and translate insights from single cell biology into a potential therapy.


Assuntos
Medula Óssea/fisiopatologia , Células-Tronco Hematopoéticas/patologia , Síndrome de Shwachman-Diamond/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Adulto , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem da Célula , Criança , Granulócitos/citologia , Hematopoese , Humanos , Inflamação , Monócitos/citologia , Mutação , Fosforilação , Análise de Sequência de RNA , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
6.
Cell Rep ; 25(6): 1436-1445.e3, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404000

RESUMO

Recent progress in single-cell technologies has enabled the identification of all major cell types in mouse. However, for most cell types, the regulatory mechanism underlying their identity remains poorly understood. By computational analysis of the recently published mouse cell atlas data, we have identified 202 regulons whose activities are highly variable across different cell types, and more importantly, predicted a small set of essential regulators for each major cell type in mouse. Systematic validation by automated literature and data mining provides strong additional support for our predictions. Thus, these predictions serve as a valuable resource that would be useful for the broad biological community. Finally, we have built a user-friendly, interactive web portal to enable users to navigate this mouse cell network atlas.


Assuntos
Células/metabolismo , Software , Animais , Redes Reguladoras de Genes , Internet , Camundongos , Regulon/genética
7.
Nature ; 560(7717): E26, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29849139

RESUMO

In Fig. 4e of this Article, the labels for 'Control' and 'HFD' were reversed ('Control' should have been labelled blue rather than purple, and 'HFD' should have been labelled purple rather than blue). Similarly, in Fig. 4f of this Article, the labels for 'V' and 'GW' were reversed ('V' should have been labelled blue rather than purple, and 'GW' should have been labelled purple instead of blue). The original figure has been corrected online.

9.
Cell ; 172(5): 1091-1107.e17, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474909

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies are poised to reshape the current cell-type classification system. However, a transcriptome-based single-cell atlas has not been achieved for complex mammalian systems. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using simple, inexpensive devices. Using Microwell-seq, we analyzed more than 400,000 single cells covering all of the major mouse organs and constructed a basic scheme for a mouse cell atlas (MCA). We reveal a single-cell hierarchy for many tissues that have not been well characterized previously. We built a web-based "single-cell MCA analysis" pipeline that accurately defines cell types based on single-cell digital expression. Our study demonstrates the wide applicability of the Microwell-seq technology and MCA resource.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Células 3T3 , Animais , Custos e Análise de Custo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/economia , Camundongos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/economia , Análise de Célula Única/economia
12.
Cell Stem Cell ; 21(1): 65-77.e5, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28648363

RESUMO

Replicating Lgr5+ stem cells and quiescent Bmi1+ cells behave as intestinal stem cells (ISCs) in vivo. Disrupting Lgr5+ ISCs triggers epithelial renewal from Bmi1+ cells, from secretory or absorptive progenitors, and from Paneth cell precursors, revealing a high degree of plasticity within intestinal crypts. Here, we show that GFP+ cells from Bmi1GFP mice are preterminal enteroendocrine cells and we identify CD69+CD274+ cells as related goblet cell precursors. Upon loss of native Lgr5+ ISCs, both populations revert toward an Lgr5+ cell identity. While active histone marks are distributed similarly between Lgr5+ ISCs and progenitors of both major lineages, thousands of cis elements that control expression of lineage-restricted genes are selectively open in secretory cells. This accessibility signature dynamically converts to that of Lgr5+ ISCs during crypt regeneration. Beyond establishing the nature of Bmi1GFP+ cells, these findings reveal how chromatin status underlies intestinal cell diversity and dedifferentiation to restore ISC function and intestinal homeostasis.


Assuntos
Desdiferenciação Celular , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Células-Tronco/metabolismo , Animais , Duodeno/citologia , Células Enteroendócrinas/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
13.
Genome Biol ; 18(1): 84, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482897

RESUMO

Single-cell analysis is a rapidly evolving approach to characterize genome-scale molecular information at the individual cell level. Development of single-cell technologies and computational methods has enabled systematic investigation of cellular heterogeneity in a wide range of tissues and cell populations, yielding fresh insights into the composition, dynamics, and regulatory mechanisms of cell states in development and disease. Despite substantial advances, significant challenges remain in the analysis, integration, and interpretation of single-cell omics data. Here, we discuss the state of the field and recent advances and look to future opportunities.


Assuntos
Análise de Célula Única/métodos , Animais , Linhagem da Célula , Perfilação da Expressão Gênica/métodos , Humanos , Imagem Óptica/métodos
14.
Cell Res ; 27(3): 386-401, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28128194

RESUMO

Recent advances have demonstrated the power of small molecules in promoting cellular reprogramming. Yet, the full potential of such chemicals in cell fate manipulation and the underlying mechanisms require further characterization. Through functional screening assays, we find that mouse embryonic fibroblast cells can be induced to trans-differentiate into a wide range of somatic lineages simultaneously by treatment with a combination of four chemicals. Genomic analysis of the process indicates activation of multi-lineage modules and relaxation of epigenetic silencing programs. In addition, we identify Sox2 as an important regulator within the induced network. Single cell analysis uncovers a novel priming state that enables transition from fibroblast cells to diverse somatic lineages. Finally, we demonstrate that modification of the culture system enables directional trans-differentiation towards myocytic, glial or adipocytic lineages. Our study describes a cell fate control system that may be harnessed for regenerative medicine.


Assuntos
Linhagem da Célula , Transdiferenciação Celular , Fibroblastos/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adipócitos/citologia , Animais , Linhagem da Célula/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromatina/metabolismo , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Neuroglia/citologia , Fenótipo , Análise de Célula Única
15.
Cell Rep ; 16(8): 2053-2060, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524622

RESUMO

Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process.


Assuntos
Linhagem da Célula/genética , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Animais , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Genes Reporter , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Intestinos/citologia , Camundongos , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Mucina-2/genética , Mucina-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Células-Tronco/citologia
16.
Nature ; 531(7592): 53-8, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935695

RESUMO

Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-δ) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-δ recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-δ-dependent manner. Notably, HFD- and agonist-activated PPAR-δ signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-δ signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-δ activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias do Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Intestinos/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Animais , Contagem de Células , Autorrenovação Celular/efeitos dos fármacos , Feminino , Genes APC , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , PPAR delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , beta Catenina/metabolismo
17.
Trends Genet ; 31(10): 576-586, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26450340

RESUMO

Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research.


Assuntos
Genoma Humano , Neoplasias/genética , Proteômica , Análise de Célula Única , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/patologia
18.
Genome Biol ; 15(12): 525, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517911

RESUMO

BACKGROUND: A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect the potential intra-cancer cellular hierarchy. RESULTS: Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells. Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/monocyte progenitor networks. CONCLUSIONS: Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic cells and provides new insights into the molecular signatures of acute myeloid leukemia.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Heterogeneidade Genética , Células Precursoras de Granulócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células Precursoras de Monócitos e Macrófagos/metabolismo , Neoplasias Experimentais
19.
Cell ; 157(3): 549-64, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766805

RESUMO

Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.


Assuntos
Reprogramação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transplante de Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Meis1 , Proteína Proto-Oncogênica N-Myc , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Análise de Célula Única , Transcriptoma
20.
SIAM J Appl Dyn Syst ; 12(4): 1997-2011, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-33132767

RESUMO

Boolean models, wherein each component is characterized with a binary (ON or OFF) variable, have been widely employed for dynamic modeling of biological regulatory networks. However, the exponential dependencse of the size of the state space of these models on the number of nodes in the network can be a daunting prospect for attractor analysis of large-scale systems. We have previously proposed a network reduction technique for Boolean models and demonstrated its applicability on two biological systems, namely, the abscisic acid signal transduction network as well as the T-LGL leukemia survival signaling network. In this paper, we provide a rigorous mathematical proof that this method not only conserves the fixed points of a Boolean network, but also conserves the complex attractors of general asynchronous Boolean models wherein at each time step a randomly selected node is updated. This method thus allows one to infer the long-term dynamic properties of a large-scale system from those of the corresponding reduced model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...